Theoretical Explanations of the Optical and EPR Spectra for Tetragonal Yb^{3+} Center in $KMgF_3$ Crystal

Hui-Ning Dong^{a,b} and Shao-Yi Wu^{b,c}

^a Institute of Applied Physics and College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

^c Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China

Reprint requests to Dr. H.-N. D.; E-mail: donghn@163.com

Z. Naturforsch. **59a**, 780 – 782 (2004); received July 4, 2004

In this paper, the EPR g factors g_{\parallel} and g_{\perp} of Yb³⁺ and hyperfine structure constants A_{\parallel} and A_{\perp} of 171 Yb³⁺ and 173 Yb³⁺ in KMgF₃ crystal are calculated from the two-order perturbation formulae. In these formulae, the contribution of the covalence effects, the admixture between J=7/2 and J=5/2 states as well as the second-order perturbation are included. The needed crystal parameters are obtained from optical spectra. The calculated results agree reasonably with the observed values.

Key words: Electron Paramagnetic Resonance; Crystal-field Theory; Yb³⁺; KMgF₃.

1. Introduction

KMgF₃ crystals with the perovskite structure have many applications and are convenient models for investigating the optical and magnetic properties of transition-metal or rare-earth impurity ions [1-5]. For example, the optical and EPR spectra of Yb3+ in KMgF₃ crystal were measured [6-8]. It is interesting that a trivalent rare-earth (Re^{3+}) can replace two different host cation sites: Mg^{2+} with six coordinated F^- anions and K^+ with twelve coordinated F^- anions. Because substitution of Re³⁺ for a Mg²⁺ or K⁺ host gives rise to charge compensation, there may be various Re³⁺ impurity centers with different site symmetries such as cubic, trigonal, tetragonal and orthorhombic in KMgF₃:Re³⁺ crystals. For instance, three different Yb³⁺(cubic, trigonal, tetragonal) centers have been found by EPR measurements. For the tetragonal Yb³⁺ center, a crystal-field analysis of the optical spectra was made. The calculated electronic energy levels are consistent with the observed values [8]. But by considering only the interaction within the ground ${}^{2}F_{7/2}$ multiplets, the EPR g factors calculated from the firstorder perturbation formulae poorly agree with the experimental findings [7,8]. In addition, up to now no theoretical calculation of the hyperfine structure constants A_{\parallel} and A_{\perp} of $^{171}{\rm Yb^{3+}}$ and $^{173}{\rm Yb^{3+}}$ in KMgF₃ crystal is reported.

In this paper, we use the second-order perturbation formulae of EPR parameters for an 4f¹³ ion in tetragonal symmetry. In these formulae, the contributions to the EPR parameters due to J-mixing between the ground ²F_{7/2} and the excited ²F_{5/2} states via crystalfield interactions, the interactions between the lowest Kramers doublet $\Gamma \gamma$ and the other Kramers doublets Γx via crystal-field and angular momentum as well as the covalence reduction effect due to the covalence of metal-ligand bonds are considered. From these formulae and crystal-field parameters obtained from experimental optical spectra, the EPR g factors g_{\parallel} and g_{\perp} of Yb³⁺ and hyperfine structure constants A_{\parallel} and A_{\perp} of ¹⁷¹Yb³⁺ and ¹⁷³Yb³⁺ in KMgF₃ crystal are calculated. The calculated results in agree reasonably with the observed values. The results are discussed.

2. Calculation

A free Yb³⁺ ion has a 4f¹³ electronic configuration with a $^2F_{7/2}$ ground state and a $^2F_{5/2}$ excited state. The tetragonal crystal-field lifts the degeneracy of the $^2F_{7/2}$ and $^2F_{5/2}$ states into four and three Kramers doublets, respectively [9, 10]. Considering the crystal-field

J-mixing effect, the energy levels and wave functions of these doublets can be obtained by diagonalizing the 14×14 energy matrix in tetragonal symmetry. The wave function of the lowest doublet $\Gamma \gamma$ can be expressed as

$$\Gamma\gamma(\gamma')\rangle = \sum_{M_{J1}} C(^{2}F_{7/2}; \Gamma\gamma(\gamma')M_{J1})|^{2}F_{7/2}M_{J1}\rangle + \sum_{M_{D}} C(^{2}F_{5/2}; \Gamma\gamma(\gamma')M_{J2})|^{2}F_{5/2}M_{J2}\rangle,$$
(1)

where γ and γ' stand for the two components of the Γ irreducible representation, and M_{J1} and M_{J2} are the half-integers in the ranges $-7/2 \sim 7/2$ and $-5/2 \sim 5/2$, respectively.

The perturbation Hamiltonian for a rare earth ion in the crystal under an external magnetic field can be written as [9]

$$\hat{H}' = \hat{H}_{so} + \hat{H}_{CF} + \hat{H}_{Z} + \hat{H}_{hf}, \tag{2}$$

where \hat{H}_{so} is the spin-orbit coupling interaction, \hat{H}_{CF} the crystal-field interaction, \hat{H}_{Z} the Zeeman interaction, and \hat{H}_{hf} the hyperfine interaction term, respectively. \hat{H}_{so} can be expressed as [10]

$$\hat{H}_{SO} = \zeta(\hat{L} \cdot \hat{S}), \tag{3}$$

where ζ is the spin-orbit coupling coefficient, and \hat{L} and \hat{S} are the orbital and spin momentum operators, respectively. The crystal-field interaction \hat{H}_{CF} can be expressed in terms of the tensor operators C_k^q [9, 10]:

$$\hat{H}_{CF} = B_2^0 C_2^0 + B_4^0 C_4^0 + B_4^4 (C_4^4 + C_4^{-4}) + B_6^0 C_6^0 + B_6^4 (C_6^4 + C_6^{-4}),$$
(4)

where B_k^q are crystal field parameters. \hat{H}_Z can be expressed in terms of the Landé factor g_J and the angular momentum operator \hat{J} as [9]

$$\hat{H}_{Z} = g_{I} \mu_{B} \hat{\boldsymbol{H}} \cdot \hat{\boldsymbol{J}}. \tag{5}$$

The hyperfine interaction can be denoted as $\hat{H}_{\rm hf} = PN_J\hat{N}$, where P is the dipolar hyperfine structure constant and N_J is the diagonal matrix element for the $^{2S+1}L_J$ state. For free Yb³⁺ ion isotopes, $P(^{171}{\rm Yb}) \approx 388.4 \cdot 10^{-4} {\rm cm}^{-1}$ and $P(^{173}{\rm Yb}) \approx -106.5 \cdot 10^{-4} {\rm cm}^{-1}$ [9, 10].

The contributions to the EPR parameters come mainly from the first-order perturbation terms, which

Table 1. The crystal-field energy levels (in cm^{-1}) of Yb^{3+} in $KMgF_3$ crystal.

	1	2	3	4	5	6	7
Cal.	0	104	701	1106	10200	10498	11060
Expt. [8]	0	105	700	1006	10200	10500	11175

Table 2. The spin-Hamiltonian parameters of Yb³⁺ in KMgF₃ crystal (the hyperfine structure constants A_i are in units of 10^{-4} cm⁻¹).

	Cal.a	Cal.b	Cal. (tot)	Expt. [8]	Expt. [7]
g_{\parallel}	0.960	0.139	1.099	1.070(1)	1.078
g_{\perp}	4.377	0	4.377	4.430(3)	4.377
$A_{ }(^{171}\text{Yb})$	246	37	283	281.0(5)	-
$A_{\perp}^{(171}{\rm Yb})$	1131	0	1131	1166(5)	-
$A_{ }(^{173}{\rm Yb})$	67	10	77	74(1)	-
$A_{\perp}^{"}(^{173}{\rm Yb})$	311	0	311	344(3)	-

^a calculated by using the first-order perturbation formula. ^b calculated by using the second-order perturbation formula.

are considered [8–10]. However, the other (7-1=6) irreducible representations Γx may mix with the ground $\Gamma \gamma$ doublet via crystal field and angular momentum interactions, and so they contributia to EPR parameters. Based on the perturbation method, the perturbation formulae of the spin-Hamiltonian parameters for the 4f¹³ ion in tetragonal symmetry can be obtained [11]:

$$g_{\parallel} = g_{\parallel}^{(1)} + g_{\parallel}^{(2)},$$

$$g_{\parallel}^{(1)} = 2g_{J}\langle \Gamma \gamma | \hat{J}_{z} | \Gamma \gamma \rangle,$$

$$g_{\parallel}^{(2)} = 2\sum_{X} \frac{\langle \Gamma \gamma | \hat{H}_{CF} | \Gamma_{X} \gamma_{X} \rangle \langle \Gamma_{X} \gamma_{X} | \hat{J}_{z} | \Gamma \gamma \rangle}{E(\Gamma_{X}) - E(\Gamma)},$$

$$g_{\perp} = g_{\perp}^{(1)} + g_{\perp}^{(2)},$$

$$g_{\perp}^{(1)} = 2g_{J}\langle \Gamma \gamma | \hat{J}_{x} | \Gamma \gamma \rangle,$$

$$g_{\perp}^{(2)} = 0,$$

$$A_{\parallel} = A_{\parallel}^{(1)} + A_{\parallel}^{(2)},$$

$$Ag_{\parallel}^{(1)} = 2PN_{J}\langle \Gamma \gamma | \hat{N}_{z} | \Gamma \gamma \rangle,$$

$$A_{\parallel}^{(2)} = 2P\sum_{X} \frac{\langle \Gamma \gamma | \hat{H}_{CF} | \Gamma_{X} \gamma_{X} \rangle \langle \Gamma_{X} \gamma_{X} | \hat{N}_{z} | \Gamma \gamma \rangle}{E(\Gamma_{X}) - E(\Gamma)},$$

$$A_{\perp} = A_{\perp}^{(1)} + A_{\perp}^{(2)},$$

$$A_{\perp}^{(1)} = 2PN_{J}\langle \Gamma \gamma | \hat{N}_{x} | \Gamma \gamma \rangle,$$

$$A_{\perp}^{(2)} = 0,$$

$$(6)$$

where the parameters g_J , g'_I , N_J and N'_I (g'_I and N'_I oc-

cur in the expansions of the above formulae) for various states can be obtained from [12] and [13].

Applying all these parameters to the energy matrix, and fitting the theoretical optical spectra to those observed [8], we can obtain the best fitting results of the crystal-field parameters and spin-orbit coupling coefficient for KMgF₃:Yb³⁺ crystal, i. e.,

$$B_2^0 \approx 1691 \text{ cm}^{-1}, B_4^0 \approx 319 \text{ cm}^{-1},$$

 $B_4^4 \approx 1206 \text{ cm}^{-1}, B_6^0 \approx -18 \text{ cm}^{-1},$ (8)
 $B_6^4 \approx 215 \text{ cm}^{-1}, \zeta \approx 2902 \text{ cm}^{-1}.$

The comparisons between the calculated and experimental energy levels is shown in Table 1.

Considering the covalence reduction effect, the orbital angular momentum \hat{L} in (6) and (7) should be multiplied by an orbit reduction factor k. We take $k \approx 0.965$ here. Thus, from the above parameters and formulae, the g factors g_{\parallel} , g_{\perp} of Yb³⁺ and hyperfine structure constants A_{\parallel} , A_{\perp} of 171 Yb and 173 Yb in

- M. L. Falin, M. V. Eremin, M. M. Zaripov, I. R. Ibragimov, and M. P. Rodionova, J. Phys.: Comdens Matter 2, 4613 (1990).
- [2] R. Y. Abdulsabirov, S. L. Korableva, and M. L. Famin, Phys. Sol. State 35, 563 (1993).
- [3] R. N. Hua, Z. H. Jia, D. M. Xie, and C. S. Shi, Mater. Res. Bull. 37, 1189 (2002)
- [4] M. Yamaga, T. Imai, K. Shimamura, and T. Fukuda, J. Crys. Grow. 229, 487 (2001).
- [5] B. Lal, K. K. Bamzai, and P. N. Kotru, Mater. Chem. Phys. 78, 202, (2003)
- [6] A. A. Antipin, A. F. Kiimachev, S. L. Korableva, L. D. Livanova, and A. A. Fedii, Fiz. Tverd. Tela. 17, 1042 (1975).
- [7] A. A. Antipin, A. V. Vinokurov, M. P. Davydova, S. L. Korableva, A. L. Stolov, and A. A. Fedii, Phys. Stat. Sol. (b) 81, 287 (1977).

KMgF₃ crystal are calculated. The calculated results of EPR parameters are compared with those of the observed values in Table 2.

3. Discussion

Table 1 shows that the calculated energy levels agree well with the observed ones. So the parameters adopted in this paper are reasonable.

Table 2 shows that, by using the second-order perturbation formulae considering the above admixtures or interactions, the EPR g factors g_{\parallel} , g_{\perp} for Yb³⁺ and hyperfine structure parameters A_{\parallel} , A_{\perp} for 171 Yb³⁺ and 173 Yb³⁺ in KMgF $_3$ crystals are satisfactorily explained. The calculated values of g_{\parallel} and A_{\parallel} from the second-order perturbation terms amount to about 14% of the corresponding values from the first-order perturbation terms. So, for the exact calculation of EPR parameters of 4 f 13 ions in crystals, the second-order perturbation contributions should be taken into account.

- [8] M. L. Falin, V. A. Latypov, B. N. Kazakov, and A. M. Leushin, Phys. Rev. B, 61, 9441 (2000).
- [9] A. Abragam and B. Bleanely, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, London 1970.
- [10] I. A. Sorin and M. V. Vlasova, Electron Spin Resonance of Paramagnetic Crystals (Translated from Russian by P. Gluck), Plenum Press, New York 1973.
- [11] H. N. Dong, W. C. Zheng, S. Y. Wu, and S. Tang, Z. Naturforsch. 58a, 434 (2003).
- [12] R. J. Elliot and K. W. H. Stevens, Proc. Roy. Soc. London A 218, 553 (1953).
- [13] B.G. Wybourne, Spectroscopic Properties of Rare Earths, Wiley Press, London 1965.